logo
  • Filtre for math subject All subjects
  • Filtre for math subject All subjects

Dérivée d’une composée

Dans cette transcription de la vidéo, Corentin présente un exercice qui combine la dérivation et les polynômes. L'exercice consiste à montrer que la dérivée de la fonction f(x) est égale à une autre fonction Q(x), où f(x) est défini comme f(x) = P(1/(1-x)) * e^(1/(1-x)). On doit également trouver la relation entre les polynômes P(x) et Q(x). Pour résoudre cet exercice, Corentin propose de dériver. La dérivée de f(x) est alors égale à P'(1/(1-x)) * (1-x)^2 * e^(1/(1-x)) + P(1/(1-x)) * (1/(1-x))^2 * e^(1/(1-x)). En factorisant par e^(1/(1-x)), on obtient le polynôme Q(1/(1-x)) = P'(1/(1-x)) + P(1/(1-x)) * (1/(1-x))^2. En posant Q(x) = P'(x) + P(x) * x^2, on obtient notre polynôme Q(x) et la relation entre Q et P. Cet exercice est simple, mais il est souvent demandé lors des examens oraux et écrits car il est fréquemment utilisé.

RELATED