- All subjects
- All subjects
Second degré Δ<0
Dans ce cours, nous étudions les polynômes du second degré dans les nombres réels. Si le discriminant Δ est positif, cela signifie qu'il existe deux solutions réelles distinctes. Si Δ est nul, il existe une seule solution réelle qui touche la courbe de la parabole. Si Δ est négatif, cela signifie qu'il n'y a pas de solution réelle. Cependant, si nous élargissons notre domaine aux nombres complexes, même lorsque Δ est négatif, il existe des racines imaginaires conjuguées. Nous utilisons une formule pour factoriser les polynômes du second degré, où nous introduisons le discriminant Δ. Selon le signe de Δ, nous pouvons ou non factoriser le polynôme. Lorsque Δ est positif, nous pouvons utiliser une identité remarquable pour factoriser le polynôme. Lorsque Δ est négatif, nous sommes dans le domaine des complexes, où nous utilisons une propriété importante: a² + b² = (a + bi)(a - bi). En appliquant cette formule, nous obtenons les solutions complexes du polynôme. À titre d'exemple, nous calculons Δ pour un polynôme donné et trouvons les solutions complexes correspondantes. En conclusion, nous soulignons l'importance de la propriété des complexes et nous sommes disponibles pour répondre à toute question supplémentaire.