logo
  • Filtre for math subject All subjects
  • Filtre for math subject All subjects

Matrice de passage

Le cours traite de l'endormorphisme U défini à partir d'une base canonique et de trois vecteurs w1, w2, w3. La matrice de cet endomorphisme est calculée en fonction de ces vecteurs. Ensuite, le cours aborde la détermination d'une base du noyau et de l'image de U, ainsi que la détermination du noyau et de l'image de l'endomorphisme U - Id, où Id est l'identité. Il est démontré que U - Id est bijective, ce qui le qualifie d'automorphisme. Enfin, le cours conclut que le noyau de cet automorphisme est réduit à zéro, ce qui signifie qu'il est inversible.

RELATED