- All subjects
- All subjects
Tangente, perpendiculaire et aire d'hyperbole !
Dans cette vidéo, le professeur explique comment résoudre un exercice mathématique qui consiste à calculer l'aire d'un triangle en utilisant des tangentes, des normales et une fonction mathématique.
L'exercice propose une fonction f2x égale à 1 sur x et demande de trouver l'aire d'un triangle ABC en utilisant cette fonction. Le professeur commence par expliquer que la formule classique pour calculer l'aire d'un triangle rectangle est le produit de la base par la hauteur, divisé par deux.
Il observe que la longueur BC est facile à calculer car elle est égale à F2A, qui peut également s'exprimer comme 1 sur A. Cependant, la longueur AB pose problème. Pour la trouver, le professeur utilise l'équation de la tangente TA à partir de l'équation de la fonction f2x.
Ensuite, il utilise la relation entre la tangente et la normale pour trouver l'équation de la normale NA. Il rappelle une propriété des droites orthogonales qui permet de trouver les coefficients A et B de l'équation de la normale.
Une fois l'équation de la normale trouvée, le professeur cherche le point d'intersection de NA avec l'axe des abscisses. En utilisant l'équation de la normale, il détermine que le point d'intersection a pour abscisse l'inverse de F'2A multiplié par A.
En conclusion, le professeur trouve que l'aire du triangle ABC est égale à moins F2A multiplié par F'2A, le tout divisé par 2A. En utilisant la fonction donnée, il simplifie l'expression pour obtenir que l'aire est égale à 1 sur 2 multiplié par A à la puissance 4.
Le professeur souligne l'importance de bien structurer sa réponse en posant le problème, en faisant les calculs nécessaires et en concluant. Il mentionne également une propriété des droites orthogonales qui peut être utile dans ce type d'exercice.
Enfin, il encourage les étudiants à poser des questions dans les commentaires et les invite à regarder ses prochaines vidéos.