- All subjects
- All subjects
Déf fondamentale
Le logarithme, noté ln, est une fonction définie sur l'intervalle des nombres réels strictement positifs. Pour un nombre réel x strictement positif, ln(x) est l'unique solution de l'équation 2y = x. On peut définir le logarithme avec n'importe quel nombre x, en appelant la solution de l'équation 2y = x, ln(x). Les fonctions exponentielle et logarithme sont réciproques l'une de l'autre, ce qui signifie que la fonction exponentielle de ln(x) est égale à x, et que ln de la fonction exponentielle de x est égale à x. Cependant, ces fonctions ne sont pas définies de la même manière pour tous les x. Par exemple, le logarithme n'est défini que pour les x positifs stricts. Il est important de se rappeler que la racine carrée d'un carré est égale à la valeur absolue du nombre d'origine, et que la fonction logarithme et la fonction exponentielle sont réciproques l'une de l'autre.