logo
  • Filtre for math subject All subjects
  • Filtre for math subject All subjects

Suites géométriques - illustration

Dans cette vidéo, nous abordons le sujet des suites géométriques et leurs différents comportements en fonction de la valeur de la raison (Q). Tout d'abord, lorsque Q est supérieur à 1, on nous dit que Q à la puissance n tend vers l'infini. Cela est illustré en prenant l'exemple de Q égal à 3, où chaque terme de la suite augmente de plus en plus. Ce comportement peut être démontré à l'aide de l'inégalité de Bernoulli. Ensuite, lorsqu'on a une raison entre -1 et 1 (pour le cas positif), on observe que la suite se rapproche de plus en plus de zéro. Par exemple, avec Q égal à 0,5, chaque terme de la suite diminue de moitié à chaque étape, et finit par converger vers zéro. Ce comportement est intuitive, car on enlève un petit bout à chaque fois. Pour le cas négatif, où Q est strictement inférieur à -1, on observe un comportement plus complexe. La suite oscille entre des valeurs positives et négatives, mais converge tout de même vers zéro. Par exemple, avec Q égal à -0,7, on voit que certains termes sont positifs tandis que d'autres sont négatifs, mais l'ensemble de la suite se rapproche de zéro. Finalement, le cas où Q est égal à 1 est trivial, car tous les termes de la suite sont égaux à 1. En résumé, lorsque la raison est proche de zéro (-1 < Q < 1), la suite converge vers zéro, soit en oscillant, soit non. Lorsque la raison est supérieure à 1 ou inférieure à -1, la suite s'écarte de zéro, soit en tendant vers l'infini, soit d'une manière plus complexe en s'écartant des deux côtés à la fois.

RELATED