- All subjects
- All subjects
Sommes des puissances
Dans cette vidéo, Matisse de Studio démontre comment sommer les premières puissances des entiers en utilisant la méthodologie de la récurrence. En notant a_n, b_n et c_n comme les sommes partielles pour k égal à 1 à n, k au carré et k au cube respectivement, il démontre que a_n est égal à n(n+1) sur 2, b_n est égal à n(n+1)(2n+1) sur 6 et c_n est égal à a_n au carré. Il utilise la méthodologie de la récurrence pour démontrer ces relations, en posant une propriété pour chaque cas (Pn pour a_n, Bn pour b_n et Cn pour c_n), en montrant l'initialisation pour n=1, l'hérédité en supposant que la propriété est vraie pour un rang quelconque, puis en synthétisant tout pour obtenir l'expression au rang suivant. En fin de compte, la somme pour k égal à 1 à n des k, k au carré et k au cube correspond respectivement à n(n+1) sur 2, n(n+1)(2n+1) sur 6 et n^2(n+1)^2 sur 4.