- All subjects
- All subjects
Série harmonique
Dans cet exercice sur la série harmonique, il est important de maîtriser la première étape qui montre comment la série diverge. Ensuite, nous étudions l'écart entre la série harmonique et ln(2n+1), qui converge vers une constante appelée "gamma". Pour arriver à ce résultat, nous utilisons une comparaison de série intégrale et nous encadrons l'intégrale de 1/x entre deux aires de rectangle. Pour prouver rigoureusement cette méthode, nous utilisons la stricte décroissance de la fonction 1/x. Ensuite, nous étudions les suites h(n)-ln(n) et h(n)-ln(n+1), et nous prouvons que ces suites convergent vers la même limite gamma. Nous montrons que gamma appartient à l'intervalle [1,5;1], et nous trouvons sa valeur grâce à la calculatrice ou au tableur. Enfin, nous résolvons une équation pour trouver à partir de quelle valeur de n un moins la suite vn sera inférieure à 10,2, ce qui nous permet de conclure que cette méthode est efficace. La première étape est essentielle et doit être maîtrisée sans hésitation.