- All subjects
- All subjects
Solutions entières et récurrence
Dans cet exercice mathématique, nous devons trouver des solutions à une équation diophantienne restreinte aux valeurs positives. Nous devons montrer que si S est supérieur à 4, il y a au moins une solution. Si S est entre 0 et 4, nous devons déterminer les valeurs pour lesquelles il y a au moins une solution. Si Y est non nul, on est plus grand que S. Donc Y doit être égal à 0 et X doit être entre 0 et 2. Les valeurs possibles pour S pour avoir des solutions sont 0, 2 et 4. Pour montrer que si S est supérieur ou égal à 4, l'équation admet au moins une solution dans N², nous utilisons la récurrence. Nous montrons que P de 4 est vrai et que P de S plus 1 est vrai si P de S est vrai. Nous distinguons le cas où Y est égal à 0 et où Y est supérieur ou égal à 1. Nous montrons que l'équation admet au moins une solution dans N² si S est supérieur ou égal à 4.