- All subjects
- All subjects
Famille liée
Le cours traite des familles libres et de leur complexité croissante dans les exercices proposés. Le thème de l'exercice est l'espace vectoriel et les suites réelles. Trois suites différentes sont considérées : la suite des cosinus nθ, la suite cosinus nθ plus a, et la suite cosinus nθ plus b. Le but est de déterminer si la famille est liée.
L'approche utilisée est d'appliquer la formule trigo cos(a + b) = cos(a) cos(b) - sin(a) sin(b) aux deux suites complexes. En utilisant cette formule, on peut réécrire les deux suites en termes de cos(nθ) et quelques coefficients réels. Cependant, il reste un terme contenant sin(nθ) qui dépend de n et rend la famille difficile à combiner.
Pour éliminer ce terme, l'idée est d'utiliser une combinaison des suites en multipliant la première par sin(b) et la deuxième par sin(a), puis en soustrayant les deux résultats. Cela permet d'obtenir une expression ne contenant plus le terme problématique. En reconnaissant une autre formule trigo, on peut écrire une combinaison linéaire des éléments de la famille : cos(nθ) = cos(a) sin(b) - cos(b) sin(a).
Cette combinaison linéaire prouve que la famille est liée. L'exercice illustre ainsi la complexité croissante des tests de liberté et la nécessité de développer des compétences pour les résoudre. Le professeur conclut en invitant les étudiants à poser des questions et en promettant une prochaine vidéo.