logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
      • Suites numériques
      • Limite et continuité
      • Dérivation et étude de fonctions
      • Primitives et EDL
      • Calcul intégral
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
      • Suites numériques
      • Limite et continuité
      • Dérivation et étude de fonctions
      • Primitives et EDL
      • Calcul intégral
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée

Théorème de comparaison - démonstration

Le cours explique comment démontrer le théorème de divergence en mathématiques, en utilisant une approche SEO-friendly. Le professeur commence par expliquer que malgré l'avantage de ce théorème de se passer des démonstrations en epsilon et en grand A, il est nécessaire de revenir à la définition pour la démontrer. Le professeur démontre ensuite que si la limite d'une suite tend vers l'infini, alors il existe un certain rang à partir duquel tous les éléments de cette suite sont plus grands qu'un certain nombre A positif. En utilisant cette information, le professeur conclut que pour tout A positif, il existe un certain rang à partir duquel tous les éléments de la suite sont plus grands que A. Finalement, le professeur résume cette démonstration en expliquant que pour tout A positif, il existe un certain rang à partir duquel tous les éléments de la suite sont plus grands que A, ce qui correspond à la définition de la divergence vers l'infini. En utilisant cette démonstration, il n'est plus nécessaire d'utiliser des démonstrations plus complexes avec des grands A et des petits epsilon.

Contenu lié