- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Arithmétique
- Complexes
- Probabilités
- Structures algébriques
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Arithmétique
- Complexes
- Probabilités
- Structures algébriques
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
Savoir-faire : les médiatrices
En géométrie, on peut repérer un point de deux manières. La première consiste à utiliser ses coordonnées (abscisse et ordonnée), ce qui correspond au complexe A + B. La deuxième manière est d'utiliser sa distance par rapport à l'origine et l'angle qu'il forme avec l'axe des abscisses. Cette méthode permet de trouver un point unique. La norme du vecteur OM est équivalente au module du complexe Z associé et l'angle entre le vecteur OM et l'axe OX est appelé l'argument de Z. On peut représenter une distance AB comme la différence entre deux nombres complexes (ZB - ZA). Un concept important à retenir est que lorsque vous devez trouver l'ensemble des points vérifiant une relation, il est possible de traduire cela en termes de distances et d'utiliser des complexes pour trouver la médiatrice ou le cercle correspondant. Si vous avez une relation du type Z - ZA = Z - ZB, vous savez que les points correspondants sont sur la médiatrice de AB. Cette technique est très courante et doit être maîtrisée. Il est important de reconnaître ces situations dès le départ et de ne pas les redécouvrir à chaque fois.