logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
      • Arithmétique
      • Complexes
      • Probabilités
      • Structures algébriques
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
      • Arithmétique
      • Complexes
      • Probabilités
      • Structures algébriques
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée

Linéariser cos³ !

Dans ce cours, l'objectif est de trouver une expression pour cos3θ en fonction de cos2θ. Pour cela, on utilise la formule de Moivre : E2iθ³ = cos3θ + isin3θ. On sait que la partie réelle de E2iθ³ est cos3θ, ce qui nous intéresse. On utilise ensuite la formule du binôme de Newton pour développer (cosθ + isinθ)³ et identifier les termes ayant une partie réelle intéressante. On obtient ainsi cos3θ = cos³θ - 3cosθsin²θ. Pour se débarrasser du sin²θ, on utilise la formule trigonométrique fondamentale cos²θ + sin²θ = 1. En remplaçant sin²θ par 1-cos²θ, on obtient finalement cos3θ = 4cos³θ - 3cosθ. Ainsi, on a isolé cos³θ en fonction de cosθ. Cette méthode d'identification et de manipulation des expressions est très courante en mathématiques.

Contenu lié