logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
      • Arithmétique
      • Complexes
      • Probabilités
      • Structures algébriques
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
      • Arithmétique
      • Complexes
      • Probabilités
      • Structures algébriques
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens

Lieu géométrique avec l’argument

Dans cette vidéo, Paul explore les relations entre des équations avec des complexes et des objets géométriques. Dans la première question, il cherche à déterminer l'ensemble des points M dont l'affixe Z vérifie la relation complexe Z-2 = rho * i, avec rho appartenant à R+. En termes géométriques, cela signifie que les points M se trouvent sur une demi-droite partant de l'origine et tournant de pi/2, décalée vers la droite de 2. Dans la deuxième question, la relation est l'argument de Z / (1 + i) = pi/2 mod 2pi. En utilisant la forme exponentielle du nombre complexe 1 + i, Paul trouve que les points M sont situés sur une demi-droite partant de l'origine et passant par le point (-1, 1). Dans la troisième question, Paul cherche les points M tels que l'argument de (Z-2i) / (Z-1+i) = pi/2 mod pi. Il introduit les points A (0,2) et B (1,1) qui permettent d'écrire l'argument en termes d'angles entre les vecteurs MB et MA. Finalement, il conclut que l'ensemble des points M forme un cercle dont le rayon est le segment AB. C'est ainsi que Paul résume le contenu de cette vidéo orientée vers les relations entre équations complexes et objets géométriques.

Contenu lié