- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Arithmétique
- Complexes
- Probabilités
- Structures algébriques
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Arithmétique
- Complexes
- Probabilités
- Structures algébriques
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
Lieux géométriques
Dans cette vidéo, Paul aborde un exercice sur les nombres complexes et leur interprétation géométrique. L'exercice consiste à déterminer le lieu géométrique des points M dont l'affixe Z satisfait une certaine condition. Paul explique que pour avoir trois points alignés, l'argument de la différence des affixes de ces points doit être égal à 0 modulo pi. Il précise également que si au moins deux points sont égaux, alors ils sont automatiquement alignés. Ensuite, il considère une condition sur la partie réelle de Z-1 divisée par Z-I, et il la traduit en termes d'arguments complexes. Il en déduit que le triangle formé par les points 1, I et Z est rectangle, quel que soit Z appartenant au cercle de centre racine de 2 et de diamètre 1. Pour la deuxième question, Paul montre que les points vérifiant la condition de la partie réelle de Z-1 divisée par Z-I égale à 0 appartiennent également au même cercle. Enfin, pour la troisième question sur un triangle rectangle formé par les points M, P et Q, Paul rappelle qu'ils doivent être distincts pour former un triangle. Il explique comment traduire cette condition en termes d'arguments complexes et montre que les points M correspondants forment une droite d'équation X égale à moins 1. Puis il détermine les droites correspondantes aux points P et Q, qui sont l'axe des imaginaires purs et une droite parallèle à l'axe des réels passant par le point (-1, 0). Enfin, Paul conclut l'exercice en récapitulant les résultats obtenus pour chaque condition et en soulignant que les points M forment un cercle de centre (-1, 0) et de rayon 1,5.