logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
      • Arithmétique dans Z
      • Structures Algébriques
      • Calcul matriciel et systèmes
      • Espaces Vectoriels
      • Matrice 2ième Partie
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
      • Arithmétique dans Z
      • Structures Algébriques
      • Calcul matriciel et systèmes
      • Espaces Vectoriels
      • Matrice 2ième Partie
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée

Nombres de Fermat

Dans cet exercice, le but est de montrer que si M est un nombre entier positif tel que 2 puissance M plus 1 soit un nombre premier, alors M est une puissance de 2. Pour cela, on développe une égalité : X puissance Q plus 1 est égal à X plus 1 fois X puissance Q moins 1, moins X puissance Q moins 2, plus X puissance Q moins 3, etc., jusqu'à plus 1. Ensuite, en simplifiant cette équation, on remarque que si Q est impair, toutes les puissances paires de X ont un signe plus, ce qui fait apparaître le plus 1 nécessaire pour que 2 puissance M plus 1 soit premier. Donc on peut conclure que M est une puissance de 2. En utilisant cette propriété, on montre par l'absurde que si 2 puissance M plus 1 est premier et M n'est pas une puissance de 2, cela conduit à une contradiction. Donc on en déduit que M est nécessairement une puissance de 2.

Contenu lié