logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
      • Arithmétique dans Z
      • Structures Algébriques
      • Calcul matriciel et systèmes
      • Espaces Vectoriels
      • Matrice 2ième Partie
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
      • Arithmétique dans Z
      • Structures Algébriques
      • Calcul matriciel et systèmes
      • Espaces Vectoriels
      • Matrice 2ième Partie
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée

Théorème de Wilson

Dans cet exercice, nous allons démontrer que si P est un entier supérieur ou égal à 2 et que P-1! est congruent à -1 modulo P, alors P est premier. Nous allons démontrer cette implication dans un sens pour l'instant. Nous partons donc du constat que P-1! est congruent à -1 modulo P, ce qui signifie qu'il existe un entier k tel que P-1! + 1 = k * P. En réarrangeant cette équation, nous obtenons 1 = k * P - (P-1!), que nous nommons équation 1 pour référence ultérieure. Notre méthode pour prouver que P est premier consiste à montrer que P est premier avec tous les nombres plus petits que lui. Si tel est le cas, alors P est effectivement un nombre premier. Nous prenons donc un nombre Q plus petit que P et dans l'intervalle [1, P-1!]. En réécrivant l'équation 1 comme 1 = k * P + Q * (P-1!), nous remarquons que le produit des entiers i dans l'intervalle [1, P-1!] (à l'exception de Q) est égal à P-1!. Nous avons également le terme -1. Ce produit est un entier relatif, plus précisément un entier négatif, ce qui n'est pas important pour notre démonstration. Ce qui est important, c'est qu'il s'agit d'un entier. Nous pouvons donc considérer cette équation comme une équation de Bézout, où k * P et Q * (P-1!) sont premiers entre eux, selon le théorème de Bézout. Ainsi, en prenant Q de manière arbitraire, nous avons démontré que P est premier avec tous les entiers plus petits que lui. Par conséquent, P est nécessairement un nombre premier. Ceci conclut notre exercice.

Contenu lié