logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
      • Suites
      • Limites des Fonctions
      • Continuité et Dérivabilité
      • Dérivation
      • Convexité
      • Logarithme
      • Fonctions Trigonométriques
      • Primitives & Équations Différentielles
      • Calcul Intégral
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
      • Suites
      • Limites des Fonctions
      • Continuité et Dérivabilité
      • Dérivation
      • Convexité
      • Logarithme
      • Fonctions Trigonométriques
      • Primitives & Équations Différentielles
      • Calcul Intégral
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subjectPrépa Examens

Fonctions cubes et convexité

Le cours aborde différents paramètres (A, B, C, D) et propose une démonstration générale sur les fonctions x³. Il met en évidence l'intuition graphique selon laquelle une fonction x³ avec un coefficient positif est concave, tandis qu'une fonction avec un coefficient négatif est convexe. Pour étudier la convexité de la fonction f, il faut analyser le signe de f prime prime, qui dépend de la valeur de A. Si A est positif, la fonction est concave, alors que si A est négatif, elle est convexe. Une erreur courante est de ne pas distinguer les différents cas. L'exercice demande également d'appliquer ce résultat à un exemple spécifique.

Contenu lié