logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
      • Suites Numériques
      • Second degré
      • Dérivation
      • Exponentielle
      • Trigonométrie
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
      • Suites Numériques
      • Second degré
      • Dérivation
      • Exponentielle
      • Trigonométrie
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée

Propriété fondamentale : démo

Dans ce cours, on démontre la propriété fondamentale de l'exponentiel, qui est exp de A plus B égale exp de A fois exp de B. Cette propriété ressemble à celle des fonctions de puissance. Pour démontrer cette propriété, on fixe une valeur pour B et on fait varier A pour étudier la fonction exp de A plus B divisé par exp de B. On cherche à montrer que cette fonction est égale à exp de A en montrant qu'elle vérifie les deux conditions qui définissent l'exponentiel : f' égale f et f2,0 égale 1. On utilise la fonction f2x égale exp de x plus b divisé par exp de b pour démontrer cette propriété. En vérifiant les deux conditions de définition de l'exponentiel pour cette fonction, on conclut que f2x est égale à exp de x. On peut alors déduire la propriété exponentielle en passant le exp de b de l'autre côté de l'équation. La méthode utilisée consiste à se rapporter à ce qu'on connaît sur l'exponentiel pour montrer d'autres choses, étant donné que l'on ne connaît que peu de choses sur cette fonction.

Contenu lié