- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Produit Scalaire
- Géométrie avec Repères
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Produit Scalaire
- Géométrie avec Repères
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
Formule d'Al-Kashi
Le théorème d'Alkaci est une formule importante dans le chapitre du produit scalaire. Il permet de trouver la valeur exacte et unique du troisième côté d'un triangle lorsque l'on connaît les longueurs de deux côtés et l'angle entre eux. C'est une généralisation du théorème de Pythagore dans le cas d'un triangle qui n'est pas rectangle. La formule d'Alkaci est une version corrigée du théorème de Pythagore, qui inclut un terme correctif lié au produit scalaire. Lorsque l'angle entre les deux côtés est de 90 degrés, la formule d'Alkaci se réduit à celle de Pythagore. On peut donc l'utiliser pour vérifier si un triangle est rectangle. Dans un exercice, on applique la formule d'Alkaci pour trouver la longueur d'un côté d'un triangle connaissant les longueurs des deux autres côtés et l'angle entre eux. Après avoir effectué les calculs, on trouve une valeur pour le côté manquant. En résumé, le théorème d'Alkaci permet de trouver la valeur exacte d'un côté de triangle en utilisant les longueurs de deux côtés et l'angle entre eux.