- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Produit Scalaire
- Géométrie avec Repères
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Produit Scalaire
- Géométrie avec Repères
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
Ensembles de points à reconnaître
Ce cours traite des produits scalaires et d'une formule très pratique qui permet de déterminer un ensemble de points vérifiant un produit scalaire égal à une valeur donnée. Cette formule s'applique lorsque l'on a deux points A et B qui forment un segment et qu'on appelle I son milieu. Pour un point M quelconque, la formule nous permet d'exprimer le produit scalaire MA.MB en fonction de M, par exemple MI carré moins un quart de AB carré. Cette formule peut être très utile pour résoudre certains problèmes de géométrie. Lorsque l'on cherche des points M vérifiant un produit scalaire égal à une valeur donnée, il faut appliquer cette formule en posant le milieu H si celui-ci n'a pas été donné. Ensuite, si on nous demande de trouver les points tels que MH égal 4, il s'agit de reconnaître l'ensemble des points à une distance constante de H, soit un cercle de centre H et de rayon 4.