- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Produit Scalaire
- Géométrie avec Repères
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Produit Scalaire
- Géométrie avec Repères
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
Chasles pour trouver un ensemble de points
Cet exercice consiste à trouver l'ensemble des points M du plan vérifiant MA ⋅ MB + MC = 0, sachant que a' est le milieu du segment abaissé. Pour simplifier l'expression, il faut trouver un moyen d'avoir du M concentré en un seul endroit. En utilisant la formule du milieu, on peut remplacer MB par MA' + A'B et MC par MA' + A'C, et ainsi dégager A'B et A'C. Il reste alors MA ⋅ 2MA', soit MA ⋅ MA', qui correspond à l'ensemble de points connus dans le cours, à savoir le cercle de diamètre AB. En effet, tout point M vérifiant MA ⋅ MB = 0 est perpendiculaire à MB, ce qui correspond à un point sur le cercle de diamètre AB. On peut donc conclure que l'ensemble des points M est l'ensemble des points du cercle de diamètre AA'.