- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Logique et ensembles
- Calcul algébrique et trigonométrie
- Complexes
- Fonctions d'une variable réelle (0)
- Primitives et équations différentielles
- Nombres réels et suites numériques
- Fonctions : Limites et continuité (1)
- Fonctions : dérivabilité (2)
- Fonctions : convexité (3)
- Analyse Asymptotique
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Logique et ensembles
- Calcul algébrique et trigonométrie
- Complexes
- Fonctions d'une variable réelle (0)
- Primitives et équations différentielles
- Nombres réels et suites numériques
- Fonctions : Limites et continuité (1)
- Fonctions : dérivabilité (2)
- Fonctions : convexité (3)
- Analyse Asymptotique
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
Équation fonctionnelle
Dans cette vidéo, Paul résout une équation fonctionnelle pour trouver les fonctions continues vérifiant que f(x+y) = f(x) + f(y). Il note que les fonctions linéaires (f(x) = ax) vérifient cette équation, et utilise la densité des rationnels pour prouver que toute fonction vérifiant cette équation est linéaire. Il prouve également que f(0) = 0 et que f(nx) = nf(x) pour tous les entiers n et x. Enfin, il montre que toute fonction vérifiant cette équation est bien une fonction linéaire.