- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Divisibilité et Congruences
- PGCD
- Théorèmes de Bézout et de Gauss
- Nombres Premiers
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Divisibilité et Congruences
- PGCD
- Théorèmes de Bézout et de Gauss
- Nombres Premiers
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
Fraction irréductible
Dans cet exercice mathématique, on prouve que la fraction 9n+1/6n+1 est irréductible pour tout entier n. Pour démontrer cela, il faut rappeler que pour qu'une fraction soit irréductible, le PGCD du numérateur et du dénominateur doit être égal à 1. On utilise également le théorème de Bézout, qui dit que le PGCD de deux nombres est égal à 1 s'il existe deux coefficients u et v qui vérifient certaines conditions. En développant la fraction et en cherchant les coefficients u et v qui conviennent, on trouve que la solution est u=-2 et v=3. En utilisant le théorème de Bézout, on prouve que la fraction est irréductible pour tout n.