- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Divisibilité et Congruences
- PGCD
- Théorèmes de Bézout et de Gauss
- Nombres Premiers
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Divisibilité et Congruences
- PGCD
- Théorèmes de Bézout et de Gauss
- Nombres Premiers
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
Système congruences et Bezout
Dans cet exercice, il s'agit de résoudre un système de congruence en utilisant les équations de Dioff-Ancienne. Le système en question est X congruent à 1 modulo 11, et X congruent à 3 modulo 4. On montre que ce système peut être résolu en trouvant une solution pour l'équation 11U plus 4V est égal à 2. On commence par exprimer X en termes de U et V, puis on résout l'équation diophantienne correspondante. On trouve une solution particulière et on généralise les solutions pour obtenir l'ensemble des solutions possibles. Enfin, on déduit les solutions du système initial en trouvant X congruent à 23 modulo 44.