- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Divisibilité et Congruences
- PGCD
- Théorèmes de Bézout et de Gauss
- Nombres Premiers
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Divisibilité et Congruences
- PGCD
- Théorèmes de Bézout et de Gauss
- Nombres Premiers
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Prépa Examens
- Révisions Maths lycée
Solutions entières et récurrence
Dans cet exercice mathématique, nous devons trouver des solutions à une équation diophantienne restreinte aux valeurs positives. Nous devons montrer que si S est supérieur à 4, il y a au moins une solution. Si S est entre 0 et 4, nous devons déterminer les valeurs pour lesquelles il y a au moins une solution. Si Y est non nul, on est plus grand que S. Donc Y doit être égal à 0 et X doit être entre 0 et 2. Les valeurs possibles pour S pour avoir des solutions sont 0, 2 et 4. Pour montrer que si S est supérieur ou égal à 4, l'équation admet au moins une solution dans N², nous utilisons la récurrence. Nous montrons que P de 4 est vrai et que P de S plus 1 est vrai si P de S est vrai. Nous distinguons le cas où Y est égal à 0 et où Y est supérieur ou égal à 1. Nous montrons que l'équation admet au moins une solution dans N² si S est supérieur ou égal à 4.