logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
      • Divisibilité et Congruences
      • PGCD
      • Théorèmes de Bézout et de Gauss
      • Nombres Premiers
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
      • Divisibilité et Congruences
      • PGCD
      • Théorèmes de Bézout et de Gauss
      • Nombres Premiers
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée

Racine rationnelle de polynôme

Dans cet exercice, nous devons montrer qu'un polynôme a une racine rationnelle. Pour cela, nous devons prouver que si p/q est une racine du polynôme, alors p divise 3 et q divise 2. Nous simplifions l'expression et obtenons une équation où nous factorisons par p et q. En utilisant le théorème de Gauss, nous prouvons que p divise 3 et q divise 2. Nous déduisons ensuite que le polynôme admet une racine rationnelle en testant les différentes combinaisons possibles pour p et q. Finalement, nous trouvons que la seule racine rationnelle de ce polynôme est -3/2.

Contenu lié