- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Divisibilité et Congruences
- PGCD
- Théorèmes de Bézout et de Gauss
- Nombres Premiers
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Divisibilité et Congruences
- PGCD
- Théorèmes de Bézout et de Gauss
- Nombres Premiers
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
Racine rationnelle de polynôme
Dans cet exercice, nous devons montrer qu'un polynôme a une racine rationnelle. Pour cela, nous devons prouver que si p/q est une racine du polynôme, alors p divise 3 et q divise 2. Nous simplifions l'expression et obtenons une équation où nous factorisons par p et q. En utilisant le théorème de Gauss, nous prouvons que p divise 3 et q divise 2. Nous déduisons ensuite que le polynôme admet une racine rationnelle en testant les différentes combinaisons possibles pour p et q. Finalement, nous trouvons que la seule racine rationnelle de ce polynôme est -3/2.