logo
  • Filtre for math subject All subjects
  • Filtre for math subject All subjects

Solution particulière plus difficile

Dans ce cours, nous étudions une équation différentielle de la forme y'-2y = xe2x. Pour résoudre cette équation, nous cherchons une solution particulière. En identifiant la structure de cette équation, nous essayons d'abord avec ax+b. Cependant, nous remarquons que cela ne fonctionne pas car la structure de cette solution ne correspond pas à notre équation. Nous en déduisons qu'il faut augmenter le degré de la solution. Nous tentons ensuite avec g2x = ax²+bx+c. Après quelques calculs, nous constatons que les termes x² s'annulent, ce qui nous permet de trouver une solution. La solution générale est donnée par y2x = ke2x + g2x, où k est une constante réelle et g2x = 1/2 x² e2x. Cela signifie que toutes les solutions de cette équation peuvent être exprimées de cette manière, en variant la valeur de k en fonction des conditions initiales.

RELATED