- All subjects
- All subjects
Ecriture en base
Dans cet exercice, on cherche à démontrer l'existence et l'unicité d'une base B telle que tout entier naturel n puisse être décomposé de manière unique sous la forme d'une somme de coefficients multipliés par des puissances de B.
Pour démontrer l'existence, on utilise une récurrence forte. On suppose que la propriété P(n) est vraie pour tout entier k plus petit que n, et on montre que P(n+1) est aussi vraie. On distingue deux cas : si n+1 est strictement plus petit que B, alors n+1 peut être écrit sous la forme d'une somme avec un seul coefficient, qui est n+1 lui-même. Si n+1 est supérieur ou égal à B, on utilise la division euclidienne pour écrire n+1 sous la forme de BQ + R, où Q est plus petit que n et R est entre 0 et B-1. On utilise ensuite l'hypothèse de ré