logo
  • Filtre for math subject All subjects
  • Filtre for math subject All subjects

Automorphisme

Dans cette vidéo, Corentin explique la notion d'automorphisme, qui consiste à déterminer les morphismes injectifs et surjectifs de Z' plus dans lui-même. Il commence par rappeler ce qu'est un morphisme de groupe, en expliquant que c'est une application qui respecte les lois du groupe. Ensuite, il montre que pour tout morphisme f de Z' dans Z', f de n est égal à n fois f de 1, grâce à une démonstration par récurrence. Il précise que cette égalité est valable aussi pour les nombres négatifs. Ainsi, les morphismes de Z' plus dans Z' plus sont les fonctions qui vérifient f de n est égal à n fois f de 1, pour tout n dans Z. Ensuite, il se concentre sur les morphismes surjectifs et trouve que f de 1 est égal à -1 ou 1. Il conclut que les morphismes surjectifs sont ceux qui vérifient f de n est égal à n ou -n. Enfin, il aborde les morphismes injectifs en utilisant le théorème selon lequel un morphisme est injectif si et seulement si le noyau de f est réduit à l'élément neutre. Il montre que le noyau de f est égal à 0 si f de 1 est différent de 0, ce qui implique que f est injectif. Sinon, si f de 1 est égal à 0, alors f n'est pas injectif car tous les éléments n de Z vérifient f de n est égal à 0. Il conclut que tous les morphismes de Z' plus dans Z' plus sont injectifs, sauf l'application identiquement nulle.

RELATED