logo
  • Filtre for math subject All subjects
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
      • Suites Numériques
      • Second degré
      • Dérivation
      • Exponentielle
      • Trigonométrie
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subject All subjects
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
      • Suites Numériques
      • Second degré
      • Dérivation
      • Exponentielle
      • Trigonométrie
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée

La forme canonique

La première méthode classique pour résoudre ce problème est d'utiliser la mise en forme canonique. Cette méthode consiste à passer d'une forme développée à une forme canonique où il n'y a qu'un seul terme contenant du x. Pour ce faire, on repère d'abord les facteurs communs. Dans cet exemple, on peut factoriser par 4 et même par -4 pour simplifier les étapes suivantes. On obtient ainsi moins 4x², moins 2x et plus 3. Ensuite, on repère le début du développement d'un carré avec les deux termes contenant du x. Dans cet exemple, le terme x²-2x est quasiment équivalent à x²-2x plus 1, auquel on soustrait 1. Donc on doit ajouter et soustraire 1 pour maintenir l'équivalence. On obtient ainsi la forme x²-2x plus 1, que l'on peut simplifier en (x-1)² moins 1. Pour réécrire la fonction f2x égale moins 4 fois x-1² moins 1, plus 3, on peut simplifier en moins 4 facteur de (x-1)² plus 2. Pour résoudre l'équation f2x égale moins 8 en utilisant la forme canonique, on développe la formule f2x et on obtient moins 4 fois (x-1)² moins 4 fois 2 est égal à moins 8. En simplifiant, on obtient que moins 4 fois (x-1)² est égal à 0. Le facteur moins 4 peut être supprimé et on obtient que (x-1) doit être égal à 0, donc x égal à 1.

RELATED