- All subjects
- All subjects
Variations et théorème des valeurs intermédiaires
Dans cet exercice d'analyse de fonctions, l'objectif est d'être très rapide, donc il faut dresser rapidement le tableau de variation de G, qui est un polynôme, en n'oubliant pas de calculer les limites et les extrémums locaux. Ensuite, on doit déterminer l'équation de G de X égale à 0 avec X appartenant à R et donner un encadrement alpha à 10-1 près, en utilisant le corollaire du théorème des valeurs intermédiaires qui garantit l'unicité de la solution de G de X égale à 0 si on a des valeurs qui encadrent 0, ce que l'on trouve dans notre cas. On peut utiliser la calculatrice pour encadrer alpha. Ensuite, on étudie la fonction f, définie par 1 moins X sur X3 plus 1, en utilisant la dérivée f' qui est exprimée en fonction de G. En étudiant le signe du numérateur de f', qui est G de X, on peut déduire le signe de f' et les variations de f sur moins 1 plus l'infini, ce qui permet de répondre à la question 3.