logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
      • Arithmétique dans Z
      • Structures Algébriques
      • Calcul matriciel et systèmes
      • Espaces Vectoriels
      • Matrice 2ième Partie
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
      • Arithmétique dans Z
      • Structures Algébriques
      • Calcul matriciel et systèmes
      • Espaces Vectoriels
      • Matrice 2ième Partie
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée

Petit théorème de Fermat

Dans cet exercice, on étudie le petit théorème de Fermat en utilisant la méthode de récurrence sur A. On veut montrer que pour tout entier k compris entre 1 et p-1, le coefficient binomial p divise k parmi p. Pour cela, on utilise la définition du coefficient binomial k parmi p, qui est p factoriel divisé par p-k factoriel fois k factoriel. On remarque que si on sort le p et le k de la factorielle, on peut réécrire cela comme k-1 parmi p-1. Comme les coefficients binomiaux sont des nombres entiers, on peut en déduire que p divise k parmi p. Ensuite, on veut montrer que a puissance p est congru à a modulo p en utilisant la récurrence sur a. On commence par l'initialisation en prenant a égale à 1, ce qui donne 1 puissance p congru à 1 modulo p. Ensuite, on effectue l'étape de récurrence de a à a plus 1. Pour cela, on utilise la formule du binôme de Newton pour décomposer a plus 1 puissance p en une somme de coefficients binomiaux multipliés par a puissance k. On remarque que grâce à ce que l'on a montré précédemment, seul le terme correspondant à k égal à 0 et à k égal à p ne sont pas divisibles par p. En prenant la congruence modulo p, on peut simplifier cette somme pour obtenir a puissance p plus 1. En utilisant l'hypothèse de récurrence, qui dit que a puissance p est congru à a modulo p, on peut conclure que a puissance p plus 1 est congru à a plus 1 modulo p. Ainsi, on a montré par récurrence que a puissance p est congru à a modulo p, ce qui est le petit théorème de Fermat.

Contenu lié