- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Suites Numériques
- Second degré
- Dérivation
- Exponentielle
- Trigonométrie
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Suites Numériques
- Second degré
- Dérivation
- Exponentielle
- Trigonométrie
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
Parabole, équation bicarré et géométrie
Dans cet exercice, on cherche à trouver l'abscisse d'un point a où un triangle OMN formé par une parabole est de valeur minimale. Pour cela, il faut d'abord déterminer les coordonnées des points M et N, puis calculer l'aire du triangle OMN en fonction de A. En étudiant la fonction obtenue, on applique la méthode des équations de bicarré pour trouver la valeur de A qui minimise cette aire. Cette méthode requiert une bonne connaissance des polynômes et de la dérivation. Il est donc primordial d'avoir une maîtrise des fondamentaux en maths avant de se lancer dans des exercices plus complexes. La réponse finale est que l'aire du triangle est minimale pour A égal à la racine de 3 sur 3.