logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
      • Suites Numériques
      • Second degré
      • Dérivation
      • Exponentielle
      • Trigonométrie
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
      • Suites Numériques
      • Second degré
      • Dérivation
      • Exponentielle
      • Trigonométrie
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée

Fraction d'exponentielles

Ce cours aborde une méthode astucieuse pour simplifier les expressions contenant des fractions. L'idée est de faire apparaître au numérateur le dénominateur de la fraction, afin de faciliter les calculs. Pour ce faire, il est important de respecter les règles de l'arithmétique. Par exemple, en réécrivant E2x/x+3, on peut transformer cette fraction en -3/(E2x+3). Cette méthode permet de simplifier les calculs de dérivées, en concentrant les variables x au numérateur. L'expression f(x) = -6e2x/(2x+3) est ainsi dérivable et croissante. De plus, on peut démontrer que 0 < f(2x) < 2 pour tout réel x. Cette démonstration repose sur les propriétés de la fraction et permet de vérifier l'expression de base de f plus facilement.

Contenu lié