- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Suites Numériques
- Second degré
- Dérivation
- Exponentielle
- Trigonométrie
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
- Tous les sujets
- Maths
- Nombres et calculs
- Géométrie
- Fonctions
- Stats et Probas
- Analyse
- Suites Numériques
- Second degré
- Dérivation
- Exponentielle
- Trigonométrie
- Géométrie
- Probas et Stats
- Analyse (spé)
- Géométrie (spé)
- Probabilités (spé)
- Arithmétique (exp)
- Complexes (exp)
- Analyse
- Algèbre
- Analyse
- Algèbre
- Probabilités
SecondePremièreTerminale2BAC SM MarocMPSI/PCSI - Physique-Chimie
- Corrigés de BAC
- Révisions Maths lycée
- Prépa Examens
Dérivabilité en 0 (2ème exemple)
Dans cet exercice, on doit étudier la dérivabilité d'une fonction comprenant de l'exponentiel pour une valeur donnée en 0. La méthode consiste à calculer le taux d'accroissement en ce point et vérifier s'il admet une limite finie. On factorise ensuite le taux d'accroissement pour faire apparaître le ratio e2x-1 sur x, qui a une limite de 1 lorsque x tend vers 0. Cette limite est la définition de la dérivabilité de la fonction exponentielle en 0. En utilisant cela, on peut simplifier l'exercice et conclure que la fonction n'est pas dérivable en 0 car son taux d'accroissement tend vers plus ou moins l'infini en ce point.