logo
  • Filtre for math subject All subjects
  • Filtre for math subject All subjects
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

En construction !

Aucun résumé n'est disponible pour cette vidéo
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Parité

Afin d'optimiser votre texte pour le référencement naturel (SEO), voici le résumé du cours : Dans cette vidéo, Corentin explique un exercice sur les fonctions paires et impaires. Il présente quatre fonctions différentes : un polynôme de degré 4, une fraction rationnelle, une somme de fonctions trigonométriques et une autre fonction trigonométrique. Il rappelle que pour être paire, une fonction doit vérifier que pour chaque x dans son domaine de définition, -x aussi appartient à son domaine, et que f(-x) est égal à f(x). Pour être impaire, la première condition est vérifiée, et en plus f(-x) est égal à -f(x). Il analyse ensuite chaque fonction et détermine si elles sont paires, impaires ou ni l'une ni l'autre. Le polynôme de degré 4 est pair, la fraction rationnelle n'est ni paire ni impaire, la somme de fonctions trigonométriques est impaire, et enfin la dernière fonction trigonométrique n'est ni paire ni impaire. En résumé, le polynôme est pair, la fraction rationnelle n'est ni paire ni impaire, la somme de fonctions trigonométriques est impaire, et la dernière fonction trigonométrique n'est ni paire ni impaire.
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Décomposition d’une fonction en fonction paire et impaire

Dans ce cours, Corentin explique comment montrer que f peut être écrite de manière unique comme la somme d'une fonction paire et d'une fonction impaire. Pour cela, il utilise un raisonnement par analyse synthèse qui consiste à supposer d'abord que f s'écrit ainsi, pour trouver ensuite les formes des fonctions paire et impaire. Enfin, il montre que ce couple de fonctions est unique en jouant avec la parité et l'imparité. En résumé, f peut être écrit de manière unique comme la somme d'une fonction paire et d'une fonction impaire, avec g de x = f(x)+f(-x)/2 et h de x = f(x)-f(-x)/2.
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Axes de symétrie d’une fonction

Dans cette vidéo, Corentin aborde les notions fondamentales d'axes et de centres de symétrie. Il présente quatre questions avec leur résolution. La première question demande de montrer que la droite d'équation x égale à 3 demi est un axe de symétrie du graph de la fonction. La seconde demande de montrer que le point de coordonnée 1,2 est un centre de symétrie, la troisième demande de montrer que le point de coordonnée 0,5 est un centre de symétrie, et la quatrième demande d'étudier les symétries de la courbe représentative de la fonction. Corentin rappelle également ce qu'est un axe et un centre de symétrie. Il propose de faire une représentation graphique de la fonction pour trouver les axes et centres de symétrie. Il conclut en expliquant que plusieurs axes de symétrie peuvent exister pour une fonction, d'où l'utilisation de la notation pour les montrer.
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Fonction bornée

Dans ce cours, nous abordons l'exercice de démontrer que deux fonctions sont bornées sur R. La première fonction est f(x) = x^2 / (x^2 + 1) et la deuxième fonction est g(x) = x / (x^2 + 1). Pour démontrer que ces fonctions sont bornées, nous utilisons le rappel que toute fonction continue sur un segment est bornée et atteint ses bornes. Pour la première fonction, nous remarquons que la limite de f(x) lorsque x tend vers l'infini est égale à 1, de même que la limite de f(x) lorsque x tend vers moins l'infini. En utilisant la définition de limite, nous trouvons deux réels a1 et a2 tels que pour tout x supérieur ou égal à a1, f(x) est compris entre 1 - epsilon et 1 + epsilon, et pour tout x inférieur ou égal à a2, f(x) est compris entre 1 - epsilon et 1 + epsilon. En utilisant le fait que f(x) est continue sur le segment [a2, a1], nous trouvons un petit m et un grand m tels que pour tout x dans ce segment, f(x) est compris entre m et M. Ainsi, pour tout x dans R, f(x) est compris entre le minimum de 1 - epsilon et m et le maximum de 1 + epsilon et M. Nous remarquons que ces bornes sont indépendantes de x, ce qui nous permet de conclure que f(x) est bornée sur R. Pour la deuxième fonction, nous remarquons que la limite de g(x) lorsque x tend vers l'infini et lorsque x tend vers moins l'infini est égale à 0. En utilisant la définition de limite, nous trouvons deux réels a1 et a2 tels que pour tout x supérieur ou égal à a1, g(x) est compris entre 0 et epsilon, et pour tout x inférieur ou égal à a2, g(x) est compris entre 0 et epsilon. En utilisant le fait que g(x) est continue sur le segment [a1, a2], nous trouvons un petit m et un grand m tels que pour tout x dans ce segment, g(x) est compris entre m et M. Ainsi, pour tout x dans R, g(x) est compris entre le minimum entre m et -epsilon et le maximum entre M et epsilon. Nous concluons donc que g(x) est bornée sur R. En résumé, les deux fonctions f(x) = x^2 / (x^2 + 1) et g(x) = x / (x^2 + 1) sont toutes les deux bornées sur R selon les démonstrations effectuées ci-dessus.
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Parité et dérivation

Aujourd'hui, nous abordons un exercice intéressant qui traite de la parité, de l'imparité des fonctions et de la dérivation. On considère une fonction F de R dans R, dérivable sur R, et on veut montrer que si F est paire, sa dérivée est impaire, et si F est impaire, sa dérivée est paire. Nous allons également généraliser cette propriété aux dérivées d'ordre supérieur et nous poser des questions sur les primitives. Pour commencer, montrons que si F est paire, sa dérivée est impaire. Soit X dans le domaine de définition de F'. Comme F est paire, on sait que F(X) = F(-X). En dérivant cette égalité, on obtient F'(X) = -F'(-X). En réinjectant cette égalité dans notre première équation, on en déduit que F'(X) = -F'(X), donc F' est impaire. De même, montrons que si F est impaire, sa dérivée est paire. Soit X dans le domaine de définition de F'. Comme F est impaire, on a F(X) = -F(-X). En dérivant cette égalité, on obtient F'(X) = F'(-X). En utilisant la formule de dérivation de la composée, on conclut que F' est paire. Maintenant, généralisons le résultat. Supposons que F est une fonction paire. Par récurrence sur N, on veut montrer que F^(2N+1) est impaire et F^(2N) est paire. L'intuition vient du fait que lorsqu'on dérive une fois, on change la parité, mais lorsque l'on dérive deux fois, on retrouve la parité initiale. Pour prouver cela, on commence avec des petites valeurs de N. La base de la récurrence H1 a déjà été démontrée. Maintenant, montrons l'hérédité. En supposant que F^(2N+1) est impaire, en dérivant, on trouve que F^(2N+2) est paire. En dérivant encore une fois, on obtient que F^(2N+3) est impaire. En réalité, cette récurrence aurait pu être immédiate, mais l'écriture formelle est nécessaire pour la clarté. Maintenant, voyons un contre-exemple. Nous prenons la fonction f(x) = x². Nous savons que cette fonction est paire. Cependant, en intégrant f(x), nous obtenons la fonction F(x) = x³/3 + 6, qui n'est ni paire ni impaire. Cela nous rappelle qu'une primitive d'une fonction n'est pas unique. En conclusion, nous avons montré que si F est une fonction paire, sa dérivée est impaire, et si F est impaire, sa dérivée est paire. Nous avons également généralisé cette propriété aux dérivées d'ordre supérieur. Cependant, il faut faire attention car les primitives d'une fonction ne sont pas toujours paires ou impaires.
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Equation fonctionnelle

Dans cette vidéo, l'objectif est de résoudre une équation fonctionnelle. On nous demande de trouver toutes les fonctions continues de 0,1 dans R qui vérifient pour tout x appartenant à 0,1 f de x sur 2 plus f de x plus 1 sur 2 est égale à 3 f de x. Pour démarrer, le speaker teste différentes fonctions classiques. Il montre que f égale à 0 fonctionne et décide alors de prouver par l'absurde que f ne peut être égal qu'à 0. Après avoir montré que f est bornée et atteint ses bornes, il utilise la supposition par l'absurde pour montrer que f ne peut être égal qu'à 0. La preuve est simple, le maximum ou le minimum de f doit être différent de 0, sinon f serait égale à 0. S'il est différent de 0, cela mène à une contradiction, montrant ainsi que f doit être égal à 0.
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

En construction !

Aucun résumé n'est disponible pour cette vidéo
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Parité

Aucun résumé n'est disponible pour cette vidéo
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Décomposition d’une fonction en fonction paire et impaire

Aucun résumé n'est disponible pour cette vidéo
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Axes de symétrie d’une fonction

Aucun résumé n'est disponible pour cette vidéo
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Fonction bornée

Aucun résumé n'est disponible pour cette vidéo
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Parité et dérivation

Aucun résumé n'est disponible pour cette vidéo
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Equation fonctionnelle

Aucun résumé n'est disponible pour cette vidéo
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

En construction !

Aucun résumé n'est disponible pour cette vidéo
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Parité

Aucun résumé n'est disponible pour cette vidéo
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Décomposition d’une fonction en fonction paire et impaire

Aucun résumé n'est disponible pour cette vidéo
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Axes de symétrie d’une fonction

Aucun résumé n'est disponible pour cette vidéo
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Fonction bornée

Aucun résumé n'est disponible pour cette vidéo
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Parité et dérivation

Aucun résumé n'est disponible pour cette vidéo
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Equation fonctionnelle

Aucun résumé n'est disponible pour cette vidéo