- All subjects
- All subjects
Transformer puis primitiver
Dans ce cours, nous étudions comment trouver une primitive à partir d'une fonction pour laquelle il n'est pas évident de la trouver. Nous avons vu qu'il est généralement facile de dériver, mais trouver une primitive peut être compliqué. Nous avons pris comme exemple une fonction f(x) égale à 3x^2 + 2x^3 + 2x. Nous avons essayé de l'identifier sous la forme u' * u. Nous avons remarqué que le polynôme de degré 2 correspondait à u(x), et après avoir dérivé, nous avons obtenu que u' était égal à 3x^2 + 2, ce qui correspondait exactement à ce que nous avions au départ. Donc, finalement, nous avons trouvé que la primitive de u' * u était égale à 1/2u^2(x). De là, nous avons pu déterminer une primitive de f(x), qui était donc égale à 1/2(x^3 + 2x)^2. Ensuite, nous avons voulu trouver la primitive qui valait 5 lorsque x était égal à 1. Nous savions que toutes les primitives étaient de la forme f(x) + k, avec k appartenant à R, mais il y avait une seule primitive qui prenait la valeur 5 en x = 1. En résolvant l'équation, nous avons trouvé que k était égal à 1/2. Donc, finalement, la fonction cherchée était 1/2(x^3 + 2x)^2 + 1/2.
Ensuite, nous avons considéré une nouvelle fonction g qui était aussi un produit, mais cette fois-ci au dénominateur. Nous avons utilisé une méthode classique pour les fonctions rationnelles, appelée décomposition en éléments simples. Nous avons trouvé que g(x) était égal à -1/(x+1) + 1/(x-1). En trouvant les primitives de chaque terme, nous avons obtenu que la primitive de g(x) était -ln(x) + ln(x-1). Après avoir vérifié que la dérivée était correcte, nous avons noté que cette fonction était définie pour x > 1, car g(x) était non définie pour x = 0 et x = 1. De plus, nous avons mentionné qu'une primitive de 1/x était ln(|x|), et qu'il fallait faire attention aux valeurs absolues lorsque la fonction était définie sur plusieurs intervalles. En conclusion, nous avons expliqué deux méthodes pour trouver des primitives : l'identification d'un produit sous la forme u' * u et la décomposition en éléments simples pour les fonctions rationnelles.