- All subjects
- All subjects
Ensemble de Nombre Premiers
Dans cet exercice, on cherche à démontrer qu'il existe une infinité de nombres premiers de la forme 4k + 3.
Tout d'abord, on doit prouver que l'ensemble x de ces nombres premiers est non vide. On remarque facilement que 3 est de la forme 4k + 3 avec k égal à 0, donc 3 appartient à x. Donc x est non vide.
Ensuite, on veut montrer que le produit de deux nombres de la forme 4k + 1 est également de cette forme. On prend donc deux nombres, k et l, et on effectue une multiplication. On factorise ensuite par 4 et on obtient un nombre k' qui peut s'écrire sous la forme 4k' + 1. Donc le produit de deux nombres de la forme 4k + 1 est bien de cette forme.
On suppose ensuite que l'ensemble x est fini, donc qu'il contient un nombre fini de nombres premiers de la forme 4k + 3, et on construit un nombre a égal à 4 multiplié par le produit de tous ces nombres, moins 1. On va montrer que a a nécessairement un diviseur premier de la forme 4k + 3.
On suppose par l'absurde que a n'a pas de diviseur premier de cette forme. On constate alors que tous les diviseurs de a doivent être de la forme 4k + 1. On exclut rapidement la possibilité que a soit divisible par 2, puisqu'il est impair. Donc tous ses diviseurs premiers doivent être de la forme 4k + 1.
Or, on a montré précédemment que le produit de nombres de la forme 4k + 1 est lui-même de cette forme. Mais a, qui est de la forme 4k - 1, ne correspond pas à cette propriété. Donc on aboutit à une contradiction et on prouve que a admet nécessairement un diviseur premier de la forme 4k + 3.
Cela signifie qu'il existe un nombre premier de la forme 4k + 3 qui divise a, contredisant ainsi l'hypothèse que l'ensemble x est fini. On conclut donc qu'il existe une infinité de nombres premiers de la forme 4k + 3.