- All subjects
- All subjects
Dérivabilité en un Point
La fonction étudiée dans ce cours est f(x) = |x|^2 + 2x - 3. On constate par observation graphique que cette fonction n'est pas dérivable en x = -3 et x = 1. On peut expliquer cela par le fait que la valeur absolue introduit une discontinuité de pente en ces points. Cependant, f(x) est dérivable sur l'ensemble des autres points de R. Cette dérivabilité peut être justifiée en montrant que f(x) est une composition de deux fonctions continues, à savoir un polynôme et la fonction valeur absolue.