logo
  • Filtre for math subject All subjects
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
      • Logique et ensembles
      • Calcul algébrique et trigonométrie
      • Complexes
      • Fonctions d'une variable réelle (0)
      • Primitives et équations différentielles
      • Nombres réels et suites numériques
      • Fonctions : Limites et continuité (1)
      • Fonctions : dérivabilité (2)
      • Fonctions : convexité (3)
      • Analyse Asymptotique
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subject All subjects
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
      • Logique et ensembles
      • Calcul algébrique et trigonométrie
      • Complexes
      • Fonctions d'une variable réelle (0)
      • Primitives et équations différentielles
      • Nombres réels et suites numériques
      • Fonctions : Limites et continuité (1)
      • Fonctions : dérivabilité (2)
      • Fonctions : convexité (3)
      • Analyse Asymptotique
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée

Raisonner par l'absurde

Dans cette vidéo, Paul démontre que si a et b sont deux entiers tels que a plus b racine de 2 égal à 0, alors a = b = 0. Il utilise la logique par l'absurde en supposant que a ou b est différent de 0 et montre que cela mène à une contradiction. Ensuite, il démontre que si m plus n racine de 2 égal à p plus q racine de 2 pour des entiers m, n, p et q, alors m = p et n = q. Il utilise le résultat de la première partie et arrive à cette conclusion en rassemblant les termes et en montrant que n moins p et n moins q sont égaux à 0. Cette vidéo est utile pour comprendre la logique impliquée dans les preuves mathématiques.

RELATED