logo
  • Filtre for math subject All subjects
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
      • Logique et ensembles
      • Calcul algébrique et trigonométrie
      • Complexes
      • Fonctions d'une variable réelle (0)
      • Primitives et équations différentielles
      • Nombres réels et suites numériques
      • Fonctions : Limites et continuité (1)
      • Fonctions : dérivabilité (2)
      • Fonctions : convexité (3)
      • Analyse Asymptotique
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
  • Filtre for math subject All subjects
  • Filtre for math subjectMaths
      Seconde
    • Nombres et calculs
    • Géométrie
    • Fonctions
    • Stats et Probas
    • Première
    • Analyse
    • Géométrie
    • Probas et Stats
    • Terminale
    • Analyse (spé)
    • Géométrie (spé)
    • Probabilités (spé)
    • Arithmétique (exp)
    • Complexes (exp)
    • 2BAC SM Maroc
    • Analyse
    • Algèbre
    • MPSI/PCSI
    • Analyse
      • Logique et ensembles
      • Calcul algébrique et trigonométrie
      • Complexes
      • Fonctions d'une variable réelle (0)
      • Primitives et équations différentielles
      • Nombres réels et suites numériques
      • Fonctions : Limites et continuité (1)
      • Fonctions : dérivabilité (2)
      • Fonctions : convexité (3)
      • Analyse Asymptotique
    • Algèbre
    • Probabilités
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée

La disjonction de cas

Dans cette vidéo, Paul explique le raisonnement par disjonction de cas avec pour exemple une équation à démontrer. Il montre comment enlever la valeur absolue de la variable x en divisant les cas en deux parties: si x est inférieur à 1 ou si x est supérieur ou égal à 1. Dans le premier cas, il développe la formule pour montrer que l'inégalité est vraie, et dans le deuxième cas, il montre que le polynôme est toujours positif, ce qui prouve également que l'inégalité est vraie. Finalement, il démontre que pour tout x réel, la valeur absolue de x-1 est inférieure ou égale à x²-x plus 1.

RELATED