- All subjects
- All subjects
Injection, surjection : exemple
Dans cette vidéo sur les fonctions à variable réelle, Paul explore l'injectivité, la surjectivité et la bijectivité. Il prend une fonction f définie par 2r dans R, avec f(x) = 2x/(1+x^2). Paul utilise le graphique de f pour montrer que f n'est pas injective car f(1.5) = 4.5 et f(2) = 4.5. Il calcule ensuite le delta de l'équation f(x) = 2 degré, ce qui montre que f n'est pas surjective non plus.Paul prouve ensuite que l'image de f est le segment [-1,1], ce qui montre que f est surjective lorsqu'elle est restreinte à cet intervalle. Enfin, il montre que la restriction de f à l'intervalle [-1,1] est bijective en trouvant des expressions pour la solution unique à l'équation g(x) = y.