- All subjects
- All subjects
Primitives et récurrence
Dans cette vidéo, Matisse de Studio explique comment calculer une série d'intégrales pour tout nombre m. La première question consiste à exprimer l'intégrale suivante en fonction de la précédente : I m+1 =∫0¹( dx/(x²+1) )^m+1. Pour cela, on ne doit pas chercher à utiliser une intégration par parties, mais plutôt dériver l'intégrale pour trouver la réponse. En utilisant la méthode du plus 1 moins 1 pour comparer le numérateur et le dénominateur, on peut trouver la relation entre I m et I m+1 . Pour calculer I3, on peut utiliser la valeur calculée de I2 pour trouver la réponse, et ainsi de suite. Finalement, la vidéo donne la formule pour calculer I m+1 en fonction de I m , ce qui permet de calculer une infinité d'intégrales. La méthode d'intégration par parties et la technique du plus 1 moins 1 sont deux astuces importantes pour réussir ce type d'exercice.