- All subjects
- All subjects
Bijection réciproque
Dans cette vidéo, Paul aborde le lien entre continuité, bijection et fonctions. Il considère la fonction f de x égale à 1 plus exp de x, sur le domaine R. Il montre que f est une bijection de R sur son image, en utilisant le théorème de la bijection, la continuité et la stricte croissance de f. Il détermine ensuite le domaine d'arrivée et la bijection réciproque en résolvant l'équation f de x est égal à y, et trouve que l'image de R par f est R plus étoile. Il donne l'expression de la bijection réciproque f moins 1 de y est égal à logarithm 2 exponentielle de y moins 1.