logo
  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
      MPSI/PCSI
    • Analyse Terminale
      • Suites
      • Limites des Fonctions
      • Continuité et Dérivabilité
      • Dérivation
      • Convexité
      • Logarithme
      • Fonctions Trigonométriques
      • Primitives&Équations Différentielles
      • Calcul Intégral
    • Géométrie Terminale
    • Probas Terminale
    • Arithmétique Maths expertes
    • Complexes Maths expertes

Terminale

Première

Seconde

MPSI/PCSI

2BAC SM Maroc

  • Filtre for math subject Tous les sujets
  • Filtre for math subjectMaths
  • Filtre for math subjectPhysique-Chimie
  • Filtre for math subjectCorrigés de BAC
  • Filtre for math subjectPrépa Examens
  • Filtre for math subjectRévisions Maths lycée
      MPSI/PCSI
    • Analyse Terminale
      • Suites
      • Limites des Fonctions
      • Continuité et Dérivabilité
      • Dérivation
      • Convexité
      • Logarithme
      • Fonctions Trigonométriques
      • Primitives&Équations Différentielles
      • Calcul Intégral
    • Géométrie Terminale
    • Probas Terminale
    • Arithmétique Maths expertes
    • Complexes Maths expertes
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Introduction Limites

Lors de l'étude des limites de fonctions, on peut s'inspirer de ce qui a été fait pour les suites. Une suite converge lorsque ses termes semblent se rapprocher d'une valeur. Les fonctions sont plus complexes que les suites car elles portent sur l'ensemble des réels, contrairement aux suites qui ne portent que sur les entiers. Les fonctions peuvent avoir différents types de limites, comme se rapprocher d'un réel, tendre vers l'infini ou osciller. On utilise un vocabulaire plus étendu lorsqu'on parle de limites de fonctions. Les limites peuvent être étudiées en l'infini, c'est-à-dire lorsque la variable tend vers l'infini, ou en un réel particulier. Il y a également des cas où il n'y a pas de limite. Des exemples graphiques sont utilisés pour illustrer ces différents cas. On introduit également la notion d'asymptote, qui est une droite vers laquelle la fonction semble tendre. Dans ce chapitre, nous étudierons les définitions et les exemples de limites, ainsi que les méthodes pour les calculer. Nous utiliserons l'analyse graphique, la factorisation et les définitions pour déterminer les limites. Il faudra aussi connaître les concepts d'asymptotes horizontales et obliques.
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

En l'infini, limites finies et infinies

La séquence présente deux définitions des limites lorsque x tend vers l'infini en mathématiques. La première définition concerne les fonctions qui tendent vers l'infini lorsque x devient de plus en plus grand. On dit qu'une fonction tend vers l'infini si, quel que soit le plateau Y choisi, la fonction finit toujours par dépasser ce plateau. La deuxième définition concerne les fonctions qui tendent vers un réel L. Dans ce cas, toutes les valeurs de la fonction finissent par être comprises dans un intervalle autour de L, peu importe la taille de cet intervalle. Ces définitions sont similaires à celles utilisées pour les suites. Il est important de préciser que lorsque x tend vers plus l'infini, afin de distinguer les autres valeurs de x. Les exemples graphiques sont présentés pour illustrer ces définitions. Il est conseillé de comprendre ces concepts, car ils sont utilisés dans des exercices mathématiques et peuvent rapporter des points précieux. N'hésitez pas à poser des questions si nécessaire.
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Les asymptotes horizontales

Lorsque X tend vers l'infini, une asymptote est une droite vers laquelle la courbe de la fonction F se rapproche. Cela se produit lorsque la limite de F lorsque X devient très grand converge vers un réel appelé L. Il est important de rappeler qu'il existe une asymptote à la courbe de F et non à la fonction F elle-même. Une petite erreur courante à éviter est de dire que la droite se colle à la fonction F au lieu de dire qu'elle se colle à la courbe de la fonction F. Un exemple d'asymptote horizontale est une fonction de la forme 1/X, où la droite Y égale 3 est asymptote à la courbe de F. Il peut y avoir des asymptotes croissantes ou décroissantes selon le côté où la courbe se rapproche de la droite. Il est également possible d'avoir une asymptote pour des fonctions comme le sinus. L'asymptote est la droite vers laquelle la courbe de F se rapproche infiniment proche. C'est une notion liée à la limite et intuitive.
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Bonus : Les asymptotes obliques

Dans ce cours, nous abordons le concept d'asymptote oblique qui se produit lorsque l'asymptote d'une courbe n'est plus horizontale mais inclinée. Nous considérons une fonction f définie sur un ensemble de définitions (df), dont la courbe cf représente la fonction f. Lorsque la différence entre la valeur réelle f2x et la droite ax + b tend vers 0, cela signifie que la courbe se rapproche de la droite oblique ax + b. Contrairement aux asymptotes horizontales où f2x tend vers une valeur réelle l, ici f2x tend vers plus l'infini car elle suit une droite affine. Il est important de savoir détecter et comprendre ce type de situation, car cela se produit fréquemment dans les exercices. Un exemple d'illustration est donné, montrant comment la courbe verte se rapproche de plus en plus de la droite rouge à mesure qu'on se rapproche de l'infini. Lorsque l'on dézoome, on constate que la courbe est pratiquement une droite. Dans certaines situations, cela peut également se produire de l'autre côté de la courbe. La différence entre les valeurs des courbes verte et rouge tend vers 0, indiquant un rapprochement. Ce cours a pour objectif de clarifier le concept d'asymptote oblique.
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

En un point réel, limite infinie

Lorsqu'on parle de limite de fonction avec X qui tend vers un réel A, on distingue deux cas principaux : 1. La fonction F peut finir par partir vers plus ou moins l'infini. 2. La fonction F peut converger vers une valeur finie. Dans le cas où la fonction F converge vers une valeur finie, cela signifie que la courbe de la fonction suit son cours normal et s'approche d'une valeur L. Cette notion est appelée la continuité. Par exemple, la limite de X + 3 lorsque X tend vers 2 est égale à 5. Cependant, il existe des cas plus complexes, comme celui de la fonction sinus X sur X où la limite en 0 est indéterminée (0/0). Dans ce cas, on exclut 0 de l'ensemble de définition de la fonction pour éviter une division par 0. Malgré cela, il est possible de démontrer que la limite de cette fonction en 0 est égale à 1. En ce qui concerne la limite infinie, on peut l'aborder en utilisant la notion de plateau. Lorsque la fonction F tend vers plus l'infini, cela signifie que la fonction ne peut être bloquée par aucun plateau de données. Par exemple, si on prend une hyperbole, peu importe la taille du plateau choisi, la fonction finira par le dépasser lorsqu'on se rapproche de plus en plus d'une valeur donnée. Si la limite à gauche ou à droite de F(x) lorsque X tend vers A est infinie, on parle d'une asymptote verticale en X égale à A. En résumé, lorsque X tend vers un réel A, il peut y avoir plusieurs cas de limite de fonction, dont certains peuvent être représentés par des asymptotes verticales ou horizontales.
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Analyse graphique

Bonjour à tous ! Dans ce cours, nous allons aborder la notion des limites des fonctions à travers une analyse graphique. Nous examinons une fonction tracée et tentons de déterminer ses limites. Lorsque nous observons le graphique, nous constatons que lorsque x tend vers l'infini, la fonction tend vers 0. C'est notre première observation. Ensuite, lorsque x tend vers 0 par une valeur positive, nous remarquons que la courbe s'élève vers l'infini. Cela nous conduit à conclure que la fonction admet deux asymptotes, une verticale en x=0 et une horizontale pour les valeurs positives et négatives infinies. Lorsqu'on nous demande les équations des asymptotes, nous savons que les droites horizontales sont de la forme y=a, tandis que les droites verticales sont de la forme x=a. Dans ce cas, l'équation pour l'asymptote horizontale est y=0 et pour l'asymptote verticale, c'est x=0. Une remarque importante à faire est qu'on parle d'une droite comme étant l'asymptote d'une courbe et non de sa fonction. Enfin, il est tout à fait possible qu'une droite soit asymptote en deux endroits, comme c'est le cas ici où l'asymptote horizontale est présente pour les valeurs positives et négatives infinies. Voilà pour cette méthode d'introduction. Si vous avez des questions, n'hésitez pas à les poser.
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Calcul limite en un point fini par factorisation

Dans ce cours, nous allons apprendre une méthode pour calculer la limite d'une fonction lorsque l'on a une forme indéterminée. Dans ces cas-là, il est souvent possible de factoriser pour lever l'indétermination. Dans le premier exemple, nous avons la fonction f(x) = x² - 2x / (x - 1). On peut remarquer que cette expression peut être simplifiée en utilisant l'identité remarquable (x - 1)² / (x - 1), ce qui donne x - 1. Ainsi, la limite de f(x) lorsque x tend vers 1 est 0, que ce soit à gauche ou à droite. Dans le deuxième exemple, nous avons la fonction g(x) = (x² - 2x + 1) / (2x - 2). Nous pouvons simplifier cette expression en factorisant tout d'abord le numérateur par (x - 1)² et en factorisant ensuite par 2. Ainsi, g(x) peut s'écrire comme 2(x - 1)(x - 2). Pour trouver les racines de ce polynôme, nous pouvons utiliser la méthode classique du delta, qui nous donne les racines x1 = 1 et x2 = 2. En utilisant ces racines, nous pouvons factoriser g(x) en 2(x - 1)(x - 2). En simplifiant cette expression, nous obtenons (x - 1) / (2x - 2). Nous pouvons également remarquer que si nous avions testé la valeur 1 comme racine, nous aurions pu trouver directement la factorisation sans calculer le delta. Ensuite, nous devons déterminer la limite de ces fonctions à droite et à gauche en 1. Pour f(x), la limite est de 1 des deux côtés. Pour g(x), quand x tend vers 1, la limite de x - 2 est -1, ce qui est différent de 0. Ainsi, la limite de g(x) quand x tend vers 1 est 0. En conclusion, lorsque nous avons une forme indéterminée, il est souvent possible de factoriser pour simplifier l'expression et trouver la limite rapidement. Il est essentiel de s'entraîner sur ce type de méthodes pour bien les maîtriser.
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Determiner une asymptote + étude

Dans ce cours, nous apprenons comment trouver les asymptotes d'une fonction. Les asymptotes peuvent être situées à moins l'infini, à plus l'infini, à la fois à moins l'infini et à plus l'infini, ou sur les bords de l'ensemble de définition de la fonction, là où il y a des valeurs interdites. Dans l'exemple donné, la fonction f(x) = -2/(1-x) est définie sur R privé de 1. Nous examinons les cas de moins l'infini et plus l'infini. Quand x tend vers moins l'infini, 1-x tend vers plus l'infini, et quand x tend vers plus l'infini, 1-x tend vers moins l'infini. Par quotient, nous concluons que f(x) tend vers moins l'infini en 0 et vers plus l'infini en 0. Nous en déduisons alors que la courbe CF a pour asymptote horizontale la droite d'équation y = 0, à moins et plus l'infini. Ensuite, nous examinons ce qui se passe en 1. Quand x tend vers 1 par valeur inférieure, 1-x tend vers 0 plus, et quand x tend vers 1 par valeur supérieure, 1-x tend vers 0 moins. Afin de confirmer cette tendance, nous pouvons choisir une valeur inférieure à 1, comme 0.1, où 1-0.1 est positif. Ainsi, 1-x tend vers plus l'infini en 1 par valeur inférieure. Nous pouvons également choisir une valeur supérieure à 1 pour vérifier. De ce fait, par quotient et en tenant compte du facteur -2, nous concluons que f(x) tend vers moins l'infini en 1 par valeur inférieure et vers plus l'infini en 1 par valeur supérieure. Lorsqu'il y a une valeur interdite, cela indique généralement une tendance vers plus ou moins l'infini, et nous avons alors une asymptote verticale. Ici, en x = 1, nous avons donc une asymptote verticale d'équation x = 1. En résumé, pour trouver les asymptotes, nous regardons les tendances en plus l'infini, moins l'infini et sur les bords de l'ensemble de définition de la fonction. Je recommande de vous entraîner à ces calculs et si vous avez des questions, consultez la FAQ.
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Calcul de limite infinie avec la définition (trouver un A)

La limite est définie comme étant lorsque une fonction tend vers l'infini. Peu importe la hauteur fixée, il y aura toujours un moment où la fonction la dépassera et sera au-dessus. Pour montrer cela, nous pouvons tracer des graphiques et fixer des valeurs pour m. A partir de ces valeurs, nous pouvons trouver les points où la fonction est toujours au-dessus de la hauteur fixée. Dans cet exemple, nous avons tracé une fonction racine de x et fixé différentes valeurs pour m. Nous pouvons constater que peu importe la valeur de m, il existe toujours un réel a où la fonction est au-dessus de la hauteur fixée. Ensuite, nous passons à un autre exemple où f(x) est égale à la racine de x carré moins 1. Pour montrer que la limite de cette fonction tend vers l'infini, nous devons trouver la valeur de a en résolvant l'inéquation f(x) > m. Nous trouvons a = racine de m carré plus 1. En utilisant cette valeur de a, nous pouvons montrer que si x est supérieur à a, alors f(x) sera supérieur à m. Il est important de s'exercer avec différentes fonctions pour pratiquer cette méthode et trouver les bonnes valeurs de a. En fin de compte, il s'agit simplement de résoudre des équations. C'est ainsi que nous revenons à la définition formelle de la limite.
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Calcul de limite finie avec la définition (trouver un epsilon)

La méthode que nous allons utiliser pour le calcul de la limite finie consiste à utiliser la définition formelle de la limite avec les epsilon. En utilisant cette méthode, nous pouvons montrer que la fonction tend vers moins l'infini. Nous fixons un réel et nous choisissons une limite aussi basse que nous le souhaitons. Nous cherchons ensuite une valeur négative pour laquelle la fonction sera inférieure à cette limite. Nous trouvons un intervalle du type 1-epsilon1, où la fonction est inférieure à M1. Nous pouvons faire la même chose avec d'autres valeurs de M pour obtenir d'autres intervalles. La méthode consiste à partir de l'inégalité f(x) inférieure à M, à résoudre f(x)-M et à trouver un encadrement de x qui nous permet de trouver l'epsilon correspondant. Nous prenons un réel M négatif, nous regardons la limite en 1- et nous résolvons f(x)-M, ce qui nous donne l'encadrement de x. Nous trouvons ensuite l'epsilon en utilisant cet encadrement. En résumé, nous utilisons la méthode de l'encadrement pour trouver l'epsilon correspondant en partant de l'inégalité f(x) inférieure à M. Nous trouvons ainsi rigoureusement que la limite quand x tend vers 1- est moins l'infini. Il est important de s'exercer avec d'autres exemples pour bien comprendre cette méthode.
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Utilisation de la dérivée

Dans cet exercice, nous devons trouver la limite d'une fonction en utilisant la dérivée. L'énoncé contient plusieurs exemples de ce type de problème. La première étape consiste à repérer les limites à calculer. Ensuite, nous utilisons la définition du taux d'accroissement pour réécrire la limite en utilisant la dérivée de la fonction. Ensuite, nous calculons la dérivée de la fonction et évaluons la dérivée en un point donné. Enfin, nous obtenons la limite en utilisant la dérivée calculée. Dans certains cas, il est possible d'utiliser une autre technique, comme la multiplication par la quantité conjuguée, pour lever l'indétermination de la limite. Il est important de vérifier si la limite est indéterminée au préalable. En utilisant ces méthodes, nous pouvons trouver les limites des fonctions données. Si des questions subsistent, il est possible de poser des commentaires dans la FAQ.
Home Screen Studeo Student Image
Home Screen Studeo Student Image
Home Screen Studeo Student Image

Encore un taux d'accroissement de exp

Ce cours porte sur le calcul de limites, avec un exemple particulièrement difficile : la limite de la fonction x exposant 1 sur x, moins x. Lorsque x tend vers l'infini, la fonction tend vers 1. Pour simplifier l'expression, on factorise par x, ce qui donne e de 1 sur x, moins 1. Cependant, cette simplification ne permet pas de résoudre l'indétermination de la forme. On utilise donc une astuce en posant x égal à 1 sur 1 sur x, ce qui donne e de quelque chose tendant vers 0, moins 1 sur quelque chose tendant vers 0. Cette limite est déjà connue et égale à 1. Ainsi, la limite de la fonction initiale est également égale à 1. Ce type d'exercice demande de repérer les formules et connaissances mathématiques spécifiques, afin de les appliquer de manière astucieuse pour obtenir la solution.