logo
  • Filtre for math subject All subjects
  • Filtre for math subject All subjects

TVI et Fonction Auxiliaire

La méthode consiste à utiliser le théorème des valeurs intermédiaires pour étudier une fonction complexe. La fonction donnée est f(x) = 10x / (e^x + 1). On commence en calculant la dérivée de f(x), avec laquelle on obtient la fonction g(x) = 1 - xe^x. On vérifie que g(x) est continue sur l'intervalle [0,+∞], et qu'elle est strictement décroissante grâce à sa dérivée g'(x) = -xe^x < 0. En utilisant le théorème des valeurs intermédiaires pour les fonctions strictement monotones, on peut trouver un unique réel α tel que g(α) = 0. On détermine que α est compris entre 1,29 et 1,28. En utilisant le tableau de signes de la dérivée de f(x), on peut déduire le sens de variation de f(x), qui est croissante sur [0,α] et décroissante sur [α,+∞]. La fonction a un maximum en α et tend vers 0 en +∞. La stricte monotonie est importante pour assurer l'unicité de l'antécédent zéro, et donc pour appliquer le théorème des valeurs intermédiaires pour les fonctions strictement monotones.

RELATED