- All subjects
- All subjects
Continuité et suites 1
Dans cette méthode de calcul de limite avec suites définies par récurrence, il faut vérifier les hypothèses pour bien trouver la limite et la justifier. La suite est convergente vers une limite L si la relation de récurrence type un+1=f(un) vérifie que si la suite converge vers une limite L, alors un+1 converge aussi, en passant à la limite. Cela nécessite que f soit continue. En cherchant les points fixes, solutions de l'équation f(x)=x, on peut trouver la solution de la limite qui peut être unique ou multiple suivant la fonction f. Il faut alors être vigilant sur la continuité de f pour éviter les erreurs. Le premier terme de la suite est essentiel, car le comportement de la suite dépend de sa valeur. Si le premier terme est négatif et que la suite diverge, alors la solution de la limite est impossible.