- All subjects
- All subjects
Continuité et suites : Théorème du point fixe
Le théorème du point fixe est un résultat important en mathématiques qui s'applique à l'étude des suites. Il dit que si une fonction continue f sur un intervalle i a un point fixe l tel que f(l)=l, alors toute suite définie récursivement par un+1=f(un) converge vers ce point fixe l. Cependant, il est important de noter que la continuité de la fonction est nécessaire pour que ce théorème fonctionne. Enfin, il existe différents types de convergence possibles pour les suites définies de manière récurrente, en fonction de la courbure de la fonction.