logo
  • Filtre for math subject All subjects
  • Filtre for math subject All subjects

Bijection dans N

Dans cette vidéo, Paul aborde l'exercice sur la bijectivité et montre comment démontrer qu'une fonction est bijective. Il explique que pour prouver l'injectivité, il faut trouver des relations entre les nombres entiers, les diviseurs, et les nombres pairs et impairs. Pour prouver la surjectivité, il faut décomposer un nombre en facteurs premiers et trouver l'existence de son antécédent. À partir de là, il montre comment composer f avec une bijection de n étoiles dans n pour obtenir une bijection de n² dans n, en utilisant une application simple qui associe n à n-1. En résumé, l'exercice consiste à prouver la bijectivité d'une fonction et à trouver une bijection de n² dans n.

RELATED